PC to HPC:
Parallel Computing

Xiaoge Wang
ICER
Jan 24, 2017

MICHIGAN STATE
llllllllll

. Outline

* Moving from PC to HPC
* Principles of HPC

e Parallel computing examples

. Outline

* MOVING FROM PCTO HPC
* Principles of HPC

e Parallel computing examples

MICHIGAN STATE
llllllllll

. Moving from PC to HPC

e Differences between PC and HPC
e When to move from PC to HPC?

e How to move from PC to HPC?

. Moving From PC to HPC

e C=computing/computer

gateway.hpcc.msu.edu

Personal Computer

—_— ®

MICHIGAN STATE 5
UNIVERSITY ICER

http://wiki.hpcc.msu.edu/x/DYAf

. Example of HPC system

gateway.hpcc.msu.edu dev-intel16-k80

— E
coo »

/\ — > |
— dev-intell16
\/ dev-gfx10 Eq
R L
| i | .
rsync.hpcc.msu.edu b
dev-intell4 E
= dev-intel14-k20 '
- > | f—'”/ © Can Stock Photo - csp0072636
\/ dev-intel14-phi
] COMPUTE NODES
GATEWAY NODES | s |

MICHIGAN STATE
UNIVERSITY

DEVELOPER NODES 6 _ﬂ

. PC vs. HPC

e Capability
— Capability is mostly from multiplicity
e User interface
— More command line, less GUI
* |Internal structure
— Data movement become bottleneck
— Nodes, cores, accelerators
— SIMD, processes, threads

* Resource Sharing

. When to move to HPC?

* Your PC fails to satisfy the needs
— Speed
— Storage
— Style
* The resources are not directly available
— Services
— Software
— Data

. How to move to HPC?

* Switch to other Apps
 Run the same App on HPC

e Adapt your own program to HPC
* Develop new App for your field on HPC

Which is your way?

. Outline

* Moving from PC to HPC
* PRINCIPLES OF HPC

e Parallel computing examples

10

. Principles of HPC

e Classification of machines

* Parallel programming models
 Methodical strategy of design

* Fundamentals of parallel programming

MICHIGAN STATE 11

Flynn’s Taxonomy

MICHIGAN STATE
UNIVERSITY

SISD

Data Pool

SIMD

Data Pool

. Classification

Instruction Pool

Instruction Pool

———|PU|

———|PU|

—|PU[H

———[PU|

MISD

Data Pool

Instruction Pool

—I:PU~—_|—~PU°—

MIMD Instruction Pool
—|PU|—{ |PU|
2|—[pul{ [Pyl
=
a|—|Pu|- Ls|PU|-

. Architecture of PC

Processor 0 Processor 1
Core 0 Core 1 Core 0 Core 1
Thread 0 Thread 0 Thread 0 Thread 0
Thread 1 Thread 1 Thread 1 Thread 1
L1 Cache L1 Cache L1 Cache L1 Cache
L2 Cache 12 Cache 12 Cache L2 Cache
keyboard I
System Bus -« >
mouse I i
display accelerator storage
MICHIGAN STATE 13

UNIVERSITY

. Architecture of HPC

Comp Comp Comp Comp Comp Comp
node 1 node2 - Node i Node il nodei2 Node n

High speed interconnection (ethernet, infiniband, etc)

File File

HOME Research Network
system system scratch

i

MICHIGAN STATE 14 .
UNIVERSITY ICER

* Shared memory

* Message passing
 Map-reduce

e Data-driven workflow

MICHIGAN STATE
llllllllll

15

. Parallel Programming Models

. Methodical Strategy of Design

C P
* Partition
* Communication <:
 Agglomeration >
* Mapping ﬁ

A M

/ Comp node 1
St |:> Comp node 2
Q Comp node 3

MICHIGAN STATE 16

. Fundamentals

Partitioning:

— Data partition

— Task partition
Communication

— Data sharing

— Message passing
Coordination between parallel tasks.
— Dependency analysis
Performance evaluation
Bug or feature?

— Non-deterministic

— Race condition

17

. Partition

e Task partition
— Program
— Module
— Function
— loop
* Data partition
— 1D, 2D, 3D array
— Domain decomposition

— Data set partition

18

. Granularity

* Instruction
* Thread

* Process

* Program

* Application

19

. Communication

e Data sharing (ex. OpenMP)
— Traffic signal, billboard, signs, etc.
— Access control: critical region
— Shared space vs. private space

* Messages passing (ex. MPI)
— Blocking/unblocking message passing
— Point-to-point : send, receive
— Collective
— Overhead of massage passing

MICHIGAN STATE 20

. Coordination

e Determine the order of execution

e Enforce the order of execution

tl =

t2 -

t3 -

g—

|

|

—
g—

t4 -]
MICHIGAN STATE

UNIVERSI ™

{

. Dependency Analysis

Given 2 tasks, t1 and t2. t2 is dependent on
t1 if
— Control dependency: t2’s execution is
guarded by the execution result of t1

— Data dependency: the data used in t2 is the
results of t1, or vice versa. Or both t1 and t2
will write to the same output.

— Loop dependency: Take loop index into
analysis

MICHIGAN STATE 22

. Performance evaluation

* Speedup
e Efficiency

e Amdahl’s Law

MICHIGAN STATE 23
llllllllll

.Speedup and Efficiency:

Let
T1: the execution time on one processor,
Tp: the execution time on p processor,
P: number of processors used,
Erelative: relative efficiency,
Erelative = T1/(pTp)
Srelative: relative speedup,
Srelative = pErelative = T1/Tp

MICHIGAN STATE 24

. Amdahl’s Law:

Assumption: for a given program,
serial fraction=5,0<s <1,
p-fold parallel fraction = 1-s.

. Amdahl’s Law:

Then

T,=sTi+(-s5)T/ p;
S, =1/(s+{1—-5)/p);
E =1/(sp+(1—s)).

When p—c, S| — 1/s, £, —0!
Where is the hope for parallel computing?

MICHIGAN STATE 26

. Is the Amdahl’s Law Correct?

— Too optimistic?

Assume that 1-s of total computation could be
perfectly parallelizable.

— Too pessimistic?
Assume that number of processors is unlimited, we
have upper bound for the speedup.
s=0.1 S(p)< 10
s=0.01 S(p)<100
s=0.001 S(p)<1000

MICHIGAN STATE 27

What is the problem with
Amdahl’s Law?

Answer: s could be the function of problem size
n!

Example: outer product of vector v*v' with one I/
O port and p processors.

Time for data input (distribution): O(n)
Time for computation: O(n?)
Serial fraction s is O(1/n).

s decreases when problem size increase!

MICHIGAN STATE 28

. Bugs or Features?

e Non-deterministic
— Reproducibility?

— Different Nodes -> different speed ->
different operation order

— Association law may not true (ex. +, *, ...)

e Race condition
— Lock
— Atomic operation

MICHIGAN STATE 29

. Outline

* Moving from PC to HPC
* Principles of HPC

 PARALLEL COMPUTING EXAMPLES

MICHIGAN STATE
llllllllll

30

Para
Para

Para

computing wit
computing wit

computing wit

. Parallel Computing Examples

n shell script
N gsub script

n data partition

31

. Example 1: Baking Cakes

Task: Need to make a cakes for a party
(input: ingredients, output: cakes)
Sequential program (single person’s task):

make a cake {

Measure dry ingredients
Measure liquid ingredients
Grease a baking pan

Mix ingredients

baking

end

MICHIGAN STATE 32

Task: Need to make a 5 cakes for a party
(input: ingredients, output: cakes)
(1) Sequential program (single person):
fori=1:5
making_a cake { }
end
(2) Parallel program (5 people team)
parfori=1:5
making_a cake { }
end

MICHIGAN STATE 33

. Example 1: Baking Cakes

. Example 1: Baking Cakes

Task: Need to make a 5 cakes for a party

(input: ingredients, output: cakes) We could partition
task further.

(3) Parallel program (25 people team)
parfor1=1:5 (in 5 groups)
make a_cake p{}
End

(4) make_a_cake_p: 5 people work together to make a
cake

— Measure dry ingredients

— Measure liquid ingredients

— @Grease pans

— Mix ingredients

— baking

MICHIGAN STATE 34 I_p‘-

. What We Learn

* Interactive mode

* Multi-process parallel computing
* Partition

* Communication

 Dependency

* Non-deterministic

* Timing

* Speedup

e Efficiency

35

Task: Make 500 cakes.

* What is the difference between 5 and 5007
 How to run on compute nodes?

* How to run many jobs in parallel?

* How to enforce the dependency?

MICHIGAN STATE 36

. Example 2: Using Job Script

. Example 2: Using Job Script

Task: Make 500 cakes
* How to run a jobs on compute nodes?
— Wrap .sh up into .qsub file: resource?

* How to run 500 jobs on compute nodes?

— Use “-t” option (array job): if all tasks are
independent

 How to run 2500 (5x500) jobs in parallel?
— Use “-w” option for dependency control

MICHIGAN STATE 37 I—pl-

. What We Learn

* Job level parallel computing
e How do subscribe resources

* Run many jobs in parallel

* Run jobs with dependency

MICHIGAN STATE 38

. Example 3: Data Partition

Task: process a large data set in parallel.
What we learn:

 How to partition a input file into many?
* How to run these task in parallel?

* How to get optimum result among all
results of 100 tasks?

MICHIGAN STATE 39 I_p‘-

. Summary

* Moving from PC to HPC
— Difference between PC and HPC
— Programming models

* Principles of HPC
— Partition
— Communication
— Coordination
— Performance evaluation
— Characteristics of parallel program

* Parallel computing examples
— Task and data partition
— Tools: shell script, job script

40

Questions?

Thanks!

