
PC to HPC:
 Parallel Computing

Xiaoge	Wang	
ICER	

Jan	24,	2017	

Outline

•  Moving	from	PC	to	HPC	
•  Principles	of	HPC	
•  Parallel	compuBng	examples	

2	

Outline

•  Principles	of	HPC	
•  Parallel	compuBng	examples	

3	

Moving from PC to HPC

•  Differences	between	PC	and	HPC	
•  When	to	move	from	PC	to	HPC?	
•  How	to	move	from	PC	to	HPC?	

4	

Moving From PC to HPC

•  C	=	compuBng/computer	

Internet	

Personal	Computer	
gateway.hpcc.msu.edu	

hPp://wiki.hpcc.msu.edu/x/DYAf		

5	

Example of HPC system

gateway.hpcc.msu.edu	

rsync.hpcc.msu.edu	

dev-intel16-k80	

dev-intel16	

dev-gfx10	

dev-intel14	

dev-intel14-k20	

dev-intel14-phi	

DEVELOPER	NODES	

COMPUTE	NODES	
GATEWAY	NODES	

6	

PC vs. HPC

•  Capability	
–  	Capability	is	mostly	from	mulBplicity	

•  User	interface	
– More	command	line,	less	GUI	

•  Internal	structure	
– Data	movement	become	boPleneck	
– Nodes,	cores,	accelerators		
–  SIMD,	processes,	threads		

•  Resource	Sharing	
	

7	

When to move to HPC?

•  Your	PC	fails	to	saBsfy	the	needs		
–  Speed	
–  Storage	
–  Style	

•  The	resources	are	not	directly	available		
–  Services	
–  Soaware	
– Data	

8	

How to move to HPC?

•  Switch	to	other	Apps	
•  Run	the	same	App	on	HPC	
•  Adapt	your	own	program	to	HPC	
•  Develop	new	App	for	your	field	on	HPC	

Which is your way?

9	

Outline

•  Moving	from	PC	to	HPC	

•  Parallel	compuBng	examples	

10	

Principles of HPC

•  ClassificaBon	of	machines	
•  Parallel	programming	models	
•  Methodical	strategy	of	design	
•  Fundamentals	of	parallel	programming		
	

11	

Classification
Fl
yn
n’
s	T

ax
on

om
y	

12	

Architecture of PC

13	

		

accelerator	 storage	display	

keyboard	

mouse	

Architecture of HPC

14	

Comp	
Node	n	

High	speed	interconnecBon	(ethernet,	infiniband,	etc)	

…...	Comp	
node	i2	

Comp	
Node	i1	

Comp	
Node	i	

Comp	
node2	

Comp	
	node	1	 …...	

File	
system	

File		
system	 HOME	 Research	 scratch	 Network	

Parallel Programming Models

•  Shared	memory	
•  Message	passing	
•  Map-reduce	
•  Data-driven	workflow	

15	

Methodical Strategy of Design

•  ParBBon	
•  CommunicaBon	
•  AgglomeraBon	
•  Mapping	
	

16	

Comp	node	1	

Comp	node	2	

Comp	node	3	

P	C	

A	 M	

Fundamentals
•  ParBBoning:		
–  Data	parBBon	
–  Task	parBBon		

•  CommunicaBon	
–  Data	sharing	
– Message	passing	

•  CoordinaBon	between	parallel	tasks.	
–  Dependency	analysis	

•  Performance	evaluaBon	
•  Bug	or	feature?	
–  Non-determinisBc	
–  Race	condiBon	

	 17	

Partition

•  Task	parBBon	
– Program	
– Module	
–  FuncBon	
–  loop	

•  Data	parBBon	
– 1D,	2D,	3D	array	
– Domain	decomposiBon	
– Data	set	parBBon		

18	

Granularity

•  InstrucBon	
•  Thread	
•  Process	
•  Program	
•  ApplicaBon	

19	

Communication

•  Data	sharing	(ex.	OpenMP)	
– Traffic	signal,	billboard,	signs,	etc.	
– Access	control:	criBcal	region	
–  Shared	space	vs.	private	space	

•  Messages	passing	(ex.	MPI)	
– Blocking/unblocking	message	passing	
– Point-to-point	:	send,	receive	
– CollecBve		
– Overhead	of	massage	passing	

20	

Coordination
•  Determine	the	order	of	execuBon	
•  Enforce	the	order	of	execuBon	

t1	

t2	

t3	

t4	

t1	

t2	 t3	

t4	

21	

Dependency Analysis

Given	2	tasks,	t1	and	t2.	t2	is	dependent	on	
t1	if	
– Control	dependency:	t2’s	execuBon	is	
guarded	by	the	execuBon	result	of	t1	

– Data	dependency:	the	data	used	in	t2	is	the	
results	of	t1,	or	vice	versa.	Or	both	t1	and	t2	
will	write	to	the	same	output.		

–  Loop	dependency:	Take	loop	index	into	
analysis	

22	

Performance evaluation

•  Speedup	
•  Efficiency	
•  Amdahl’s	Law	

23	

Speedup and Efficiency:

Let		
T1:	the	execuBon	Bme	on	one	processor,	
Tp:	the	execuBon	Bme	on	p	processor,	
P:	number	of	processors	used,	
Erela(ve:	relaBve	efficiency,	
				Erela(ve	=	T1/(pTp)	
Srela(ve:	relaBve	speedup,	
				Srela(ve	=	pErela(ve	=	T1/Tp			

24	

Amdahl’s Law:

AssumpBon:	for	a	given	program,		

serial	fracBon	=	s,	0	≤	s	≤	1,		
p-fold	parallel	fracBon	=	1-s.	

Tp	 (1-s)T1	

start	

end	

T1	

Parallel	execuBon	

start	

end	

25	

Amdahl’s Law:

Then	
	
	
	
	
	
When	p→∞,	Sp	→	1/s,	Ep	→	0!	
Where	is	the	hope	for	parallel	compu(ng?		
	
	

)).1(/(1
);/)1(/(1
;/)1(11

sspE
pssS
pTssTT

p

p

p

−+=

−+=

−+=

26	

Is the Amdahl’s Law Correct?

– Too	opBmisBc?	
			Assume	that	1-s	of	total	computa(on	could	be	
perfectly	parallelizable.		

– Too	pessimisBc?	
Assume	that	number	of	processors	is	unlimited,	we	
have	upper	bound	for	the	speedup.		

s	=	0.1								S(p)<	10	
s	=	0.01						S(p)	<	100	
s	=	0.001				S(p)	<	1000	

27	

What is the problem with
Amdahl’s Law?

Answer:	s	could	be	the	funcBon	of	problem	size	
n	!	

Example:	outer	product	of	vector	v*vT	with	one	I/
O	port	and	p	processors.	
Time	for	data	input	(distribuBon):	O(n)		
Time	for	computaBon:	O(n2)	
Serial	fracBon	s	is	O(1/n).	

	s	decreases	when	problem	size	increase!	

28	

Bugs or Features?
•  Non-determinisBc	
– Reproducibility?	
– Different	Nodes	->	different	speed	->	
different	operaBon	order	

– AssociaBon	law	may	not	true	(ex.	+,	*,	…)	

•  Race	condiBon	
–  Lock	
– Atomic	operaBon	
	

29	

Outline

•  Moving	from	PC	to	HPC	
•  Principles	of	HPC	

30	

Parallel Computing Examples

1.  Parallel	compuBng	with	shell	script	
2.  Parallel	compuBng	with	qsub	script	
3.  Parallel	compuBng	with	data	parBBon	

31	

Example 1: Baking Cakes
Task:	Need	to	make	a	cakes	for	a	party	
										(input:	ingredients,	output:	cakes)		
SequenBal	program	(single	person’s	task):	

		make_a_cake	{	
•  Measure	dry	ingredients		
•  Measure	liquid	ingredients	
•  Grease	a	baking	pan		
•  Mix	ingredients		
•  baking	
}	

end	

32	

Example 1: Baking Cakes

Task:	Need	to	make	a	5	cakes	for	a	party	
										(input:	ingredients,	output:	cakes)		
(1)	SequenBal	program	(single	person):	
						for	i	=	1:	5	

						making_a_cake	{	}	
end	

(2)	Parallel	program	(5	people	team)	
						par	for	i	=	1:	5	

						making_a_cake	{	}	
end	

	 33	

Example 1: Baking Cakes
Task:	Need	to	make	a	5	cakes	for	a	party	
										(input:	ingredients,	output:	cakes)	We	could	parBBon	
task	further.	
(3)	Parallel	program	(25	people	team)	
						par	for	I	=	1:	5		(in	5	groups)	

						make_a_cake_p	{	}	
End	

(4)	make_a_cake_p:	5	people	work	together	to	make	a	
cake	

–  Measure	dry	ingredients		
–  Measure	liquid	ingredients	
–  Grease	pans		
–  Mix	ingredients		
–  baking	

	
34	

What We Learn

•  InteracBve	mode	
•  MulB-process	parallel	compuBng	
•  ParBBon	
•  CommunicaBon	
•  Dependency	
•  Non-determinisBc	
•  Timing	
•  Speedup	
•  Efficiency	

35	

Example 2: Using Job Script

Task:	Make	500	cakes.	
•  What	is	the	difference	between	5	and	500?	
•  How	to	run	on	compute	nodes?	
•  How	to	run	many	jobs	in	parallel?		
•  How	to	enforce	the	dependency?	

36	

Example 2: Using Job Script

Task:	Make	500	cakes	
•  How	to	run	a	jobs	on	compute	nodes?	
– Wrap	.sh	up	into	.qsub	file:	resource?	

•  How	to	run	500	jobs	on	compute	nodes?	
– Use	“-t”	opBon	(array	job):	if	all	tasks	are	
independent	

•  How	to	run	2500	(5x500)	jobs	in	parallel?		
– Use	“-w”	opBon	for	dependency	control	

37	

What We Learn

•  Job	level	parallel	compuBng	
•  How	do	subscribe	resources	
•  Run	many	jobs	in	parallel	
•  Run	jobs	with	dependency	

38	

Example 3: Data Partition

Task:	process	a	large	data	set	in	parallel.		
What	we	learn:	
•  How	to	parBBon	a	input	file	into	many?		
•  How	to	run	these	task	in	parallel?	
•  How	to	get	opBmum	result	among	all	
results	of	100	tasks?	

39	

Summary

•  Moving	from	PC	to	HPC	
–  Difference	between	PC	and	HPC	
–  Programming	models	

•  Principles	of	HPC	
–  ParBBon	
–  CommunicaBon	
–  CoordinaBon	
–  Performance	evaluaBon	
–  CharacterisBcs	of	parallel	program	

•  Parallel	compuBng	examples	
–  Task	and	data	parBBon		
–  Tools:	shell	script,	job	script		

40	

Thanks!	

41	

QuesBons?	

